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Continuous Time Markov Chains
(CTMCs)



Overview

There are many representations of CTMCs:
• Dynamics
• Densities
• Generator/Rate Matrix

However, I don’t think the literature around discrete diffusion does a great job at showing
the connection between these different viewpoints. Furthermore, the literature around
CTMCs mainly only explores the time-homogeneous case, whereas discrete diffusions are
time-inhomogeneous.
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Time-Homogeneous CTMCs

Definition
Let S := [N ] = {1, . . . , N} be a finite set. A Q-matrix/rate matrix on S is defined as
any matrix Q of the form

1. Qij ≥ 0 for all i ̸= j;
2. 0 ≤ −Qii < ∞ for all i

3.
∑

j∈S Qij = 0 =⇒ Qii = −
∑

j ̸=i Qij .
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Time-Homogeneous CTMCs

Definition
A (càdlàg) time-homogeneous CTMC (Xt)t≥0 is defined by the dynamics:

1. Sample ϵn ∼ Exp(−Qii) and set Tn+1 := Tn + ϵn;
2. For all Tn ≤ s < Tn+1, we set Xs := XTn ;
3. At time Tn+1, we sample the next state according to the probabilities

K(i, j) = Qi,j/ − Qi,i for j ̸= i,
with the initial conditions X0 = x0 and T0 = 0.
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Time-Homogeneous CTMCs

From this we can derive further results about (Xt)t≥0 Norris (1998):
• The transition probabilities only depend on relative times (time-homogeneous):
P(Xt = x′|Xs = x) = P(Xt−s = x′|X0 = x);

• The ODE governing the probability flow pt = exp(tQ) induced by (Xt)t≥0;
• First order approximations of transition kernels in terms of Q;
• The time-reversal of (Xt)t≥0;
• The strong Markov property.

However, this still raises the question: where does this “rate matrix” come from and how
does it encode information about the law of (Xt)t≥0?
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Markov Processes

Definition
A stochastic process (Xt)t≥0 defined on the probability space (Ω, F ,P) living in the state
space (S, F̃) is a Markov process if for all s, t ≥ 0:

P(Xs+t ∈ A|Fs) = P(Xs+t ∈ A|Xs),

where A ∈ F̃ and Fs = σ(Xr : 0 ≤ r ≤ s) is the σ-algebra/filtration generated (Xt)t≥0
up to and including time s ≥ 0.

Remark
We say a Markov process (Xt)t≥0 is time-homogeneous if for all s, t ≥ 0:

P(Xs+t ∈ A|Xs) = P(Xt ∈ A|X0).
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Markov Processes

Markov processes are usually studied in terms of their transition kernels Kt(x, dy).
• However, for what follows, it will be useful to consider the abstract study of Markov

processes through Markov semigroups.
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Semigroups

Definition
A family of linear operators (Pt)t≥0 on a Banach space (B, ||·| |) is called a one-parameter
semigroup if the following conditions are satisfied (Guionnet and Zegarlinksi, 2004):

1. P0 = id;
2. PtPs = Ps+t for any s, t ≥ 0.
3. The mapping t 7→ Pt is continuous in the sense that for all f ∈ B, t 7→ Ptf is

continuous.

Remark
For most purposes, we can consider B to be the set C(S) of real-valued bounded
continuous functions on a Polish space S equipped with the uniform norm (this covers
both the continuous and discrete settings).
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Markov Semigroups

Definition
A one-parameter semigroup (Pt)t≥0 is called a Markov semigroup if the following
conditions hold for any t ≥ 0:

1. Pt1 = 1;
2. Ptf ≥ 0 if f ≥ 0;
3. ||Ptf | | ≤ ||f | |.
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Feller Semigroups

Definition
A one-parameter semigroup (Pt)t≥0 is called a Feller semigroup if the following
conditions hold for every f ∈ C0(S) and any t ≥ 0:

1. Ptf ∈ C0(S);
2. Ptf ≥ 0 if f ≥ 0;
3. ||Ptf | |∞ ≤ ||f | |∞
4. The following limit holds

lim
h→0+

||Phf − f | |∞ = 0
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Kernel Representation

Definition
Given a (time-homogeneous) Markov process (Xt)t≥0, the associated semigroup is given
by the linear operator:

Ptf(x) = E[f(Xt)|X0 = x],

where f : S → R belongs to some suitable set of functions.
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Chapman-Kolmogorov

Remark
We note that this is not an arbitrary choice, indeed, under fairly weak conditions, any
(abstract) Markov semigroup admits a kernel representation (Bakry et al., 2013).
Moreover, this usually can also be expressed in terms of a (probability) density:

Ptf(x) =
∫

S
pt(x, y)f(y)dm(y).

Theorem
As a consequence, we recover the Chapman-Kolmogorov equations:

pt+s(x, y) =
∫

S
ps(x, z)pt(z, y)dm(y).

This determines the finite-dimensional distributions of (Xt)t≥0 providing a link between
abstract semigroups and Markov processes (see Kolmogorov extension theorem).
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Infinitesimal Generator

Definition
The infinitesimal generator L of a semigroup (Pt)t≥0 is defined by

Lf = lim
t→0

Ptf − f

t
,

for any function f for which the limit makes sense. The domain D(L) of L is the set of
functions of B for which the limit makes sense.
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Hille-Yoshida Theorem

Theorem
(Guionnet and Zegarlinksi, 2004) A linear operator L is the infinitesimal generator of a
Markov semi-group (Pt)t≥0 on B if and only if

• 1 ∈ D(L) and L1 = 0;
• D(L) is dense in B;
• L is closed
• For any λ > 0, (λid − L) is invertible and its inverse (λid − L)−1 is bounded with

sup
||f ||≤1

∣∣∣|(λid − L)−1f
∣∣∣ | ≤ 1

λ
,

and preserves positivity - i.e. for all f ≥ 0, (λid − L)−1f ≥ 0.
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Kolmogorov Equations

Remark
One of the confusing parts of trying to understand the forward and backward equations
presented in discrete diffusion papers is that they are shown on densities, whereas the
wider literature on Markov processes presents this at the level of semigroups.
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Time-Homogeneous Backward Equation

Theorem
The backward equation for a time-homogeneous Markov process is given by:

∂tPtf = lim
h→0

Pt+hf − Ptf

h

= lim
h→0

(
Ph − id

h

)
Ptf

= LPtf.

Remark
When S is discrete, Pt and L can be expressed as a matrix (as f can be represented as a
column vector) and so the limits here are well defined. In the continuous case, we can
use the density representation of Pt to justify the above limits.
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Time-Homogeneous Backward Equation

Theorem
At the level of densities, we have

∂tpt(x, y) = Lxpt(x, y),

where Lx is the generator L acting on the x argument (considering the y argument to be
fixed).
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Time-Homogeneous Backward Equation

Proof
For the first claim, from the backward equation, we have

L(Ptf)(x) = lim
h→0

1
h

(Ph(Ptf)(x) − Ptf(x))

= lim
h→0

1
h

(∫
ph(x, z)Ptf(z)dz − Ptf(x)

)
= lim

h→0

1
h

(∫
ph(x, z)

(∫
pt(z, y)f(y)dy

)
dz −

∫
pt(x, y)f(y)dy

)
=
∫ (

lim
h→0

∫
ph(x, z)pt(z, y)dz − pt(x, y)

h

)
f(y)dy

Leo Zhang Introduction to Discrete Diffusion July 30, 2025 20/101



Time-Homogeneous Backward Equation

Proof

=⇒ L(Ptf)(x) =
∫

Lxpt(x, y)f(y)dy

We also have ∂tPtf(x) =
∫

∂tpt(x, y)f(y)dy so by the backward equation:∫
(∂tpt(x, y) − Lxpt(x, y)) f(y)dy = 0

from which we can conclude as f belongs in a richer enough class of functions.
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Time-Homogeneous Backward Equation

Remark
This looks different than the usual presentation of the Kolmogorov backward equation
which is usually presented for the time-inhomogeneous case.
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Adjoint Operator

Definition
Given some reference measure m on S, we can form the standard inner product of
functions in L2(S, m) by

⟨f, g⟩ =
∫

S
f(x)g(x)dm(x).

We define the set D(L∗) as the space of functions g ∈ L2(S, µ) where for a suitable set
of f ∈ D(L) (Ren et al., 2025), there exists a unique function L∗g ∈ L2(S, m), for which
the following relationship holds

⟨Lf, g⟩ = ⟨f, L∗g⟩

We refer to L∗ as the adjoint (linear) operator to L.

Leo Zhang Introduction to Discrete Diffusion July 30, 2025 23/101



Adjoint Operator

Example
If S is a discrete set, we can take m to be the counting measure on S so that
f ∈ L2(S, m) are represented by finite vectors of length |S|. In this case, the inner
product reduces to the standard Euclidean inner product.

• In this setting, L can be represented by a matrix. This allows us to compute the
adjoint as simply just L∗ = L⊤.
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Time-Homogeneous Forward Equation

Theorem
The forward equation for a time-homogeneous Markov process is given by:

∂tPtf = lim
h→0

Pt+hf − Ptf

h

= lim
h→0

Pt

(
Phf − f

h

)
= PtLf.
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Time-Homogeneous Forward Equation

Theorem
At the level of densities, we have

∂tpt(x, y) = L∗ypt(x, y),

where L∗y is the adjoint to L acting on the y argument (considering the y argument to be
fixed). Moreover, this implies ∂tpt(x) = L∗pt(x).
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Time-Homogeneous Forward Equation

Proof
From the forward equation, we have

PtLf(x) =
∫

pt(x, y)Lf(y)dy

= ⟨pt(x, ·), Lf(·)⟩
= ⟨L∗pt(x, ·), f(·)⟩

=
∫

L∗ypt(x, y)f(y)dy

We also have ∂tPtf(x) =
∫

∂tpt(x, y)f(y)dy so by the backward equation:∫ (
∂tpt(x, y) − L∗ypt(x, y)

)
f(y)dy = 0

from which we can conclude as f belongs in a richer enough class of functions.
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Time-Homogeneous Forward Equation

Proof
Let pt(x) = P(Xt = x), then by the linearity of L∗y, we have conclude by marginalisation
that

∂tpt(x) = L∗pt(x),

remembering that pt(x, y) = P(Xt = y|X0 = y) (somewhat bad choice of notation here).
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Application to Time-Homogeneous CTMCs

Example
Recall the setting when S = [N ] is discrete, then Pt is represented by a matrix. Then
from taking f(x) = δi(x) and its column vector representation, we can see that Pt is
formed of transition probabilities:

Pt = (pij(t))i,j∈S where pij(t) = P(Xt = j|X0 = i).

• Moreover, the forward and backward equations (on semigroups) allow us to conclude:

Pt = exp(tL)

(where exp(A) =
∑∞

n=0
An

n! is the matrix exponential) from standard ODE theory
(applied column-wise to the matrix equation ∂tPt = QPt and P0 = id).
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Application to Time-Homogeneous CTMCs

Example
We will see later how the form of the Q matrix pops out from the definition of the
CTMC’s dynamics later when we look at the more general time-inhomogeneous case.
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Remark

• The objects presented above are not necessarily causally related; they can be defined
from a range of starting points - i.e. starting from Markovian transition kernel to
define semigroups instead of starting with abstract semigroups.

• In addition, there tends to be lots of technical conditions to these results which vary
from different sources; we have omitted over some of these to transmit the essential
ideas.

• Of course, this does make learning about the subject more confusing.
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Time-Inhomogeneous CTMCs

Definition
A time-inhomogeneous CTMC is a (càdlàg) time-inhomogeneous Markov process (Xt)t≥0
defined by the dynamics (Del Moral and Penev, 2017):

1. For all Tn ≤ s < Tn+1, we set Xs := XTn where

Tn+1 := inf
{

t ≥ Tn :
∫ t

Tn

λs(Xs) ≥ Exp(1)
}

;

2. At time Tn+1, we sample the next state by XTn+1 ∼ KTn+1(XTn+1− , dx),
with the initial conditions X0 = x0 and T0 = 0.

• Furthermore, we have λt(x) ≥ 0, Kt(x, x) = 0 and t 7→ λt(x), t 7→ Kt(f)(x) are
Lipschitz continuous for any x and for any (suitable) function f .
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Time-Inhomogeneous CTMCs

Remark
We recover the time-homogeneous case by choosing λt(i) = −Qii and
Kt(i, j) = −Qij/Qii.
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Time-Inhomogeneous CTMCs

Theorem
The transition kernels have the form:

P(Tn+1 ∈ dt, XTn+1 ∈ dy|Tn = s, XTn = x) = λt(x) exp
(

−
∫ t

s
λr(x)dr

)
dt Kt(x, dy).
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Time-Inhomogeneous CTMCs

Proof
Define F (t) =

∫ t
Tn

λr(XTn)dr for t ≥ Tn. We note that by assumption F (t) is
monotonically increasing and hence is invertible.

P(Tn+1 ≤ t|Tn) = 1 − P(Tn+1 > t|Tn) = 1 − P(F−1(Exp(1)) > t)
= 1 − P(Exp(1) > F (t))

= 1 − exp
(

−
∫ t

Tn

λr(XTn)dr

)
.

To recover the density, we just take the derivative.
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Time-Inhomogeneous CTMCs

Theorem
Moreover, when only conditioning on Xs = x, the distribution of the next jump time T (s)

is given by
P(T (s) ∈ dt|Xs = x) = λt(x) exp

(
−
∫ t

s
λr(x)dr

)
dt.

This is a consequence of the memoryless property of the Tn distributions.
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Time-Evolution Operators

Definition
A family of linear operators (Ps,t)s≤t,t∈T on a Banach space (B, ||·| |) is called a
time-evolution operator family, or simply an evolution system, if the following conditions
hold (Ren et al., 2025):

1. Pt,t = id for any t ∈ T;
2. Ps,t = Ps,rPr,t for any s ≤ r ≤ t with s, r, t ∈ T.

Remark
Ren et al. (2025) takes the state space (S, B(S), µ) where S is locally compact, separable
Hausdorff with Radon measure µ, and bounded Borel measurable functions for the space
B with the supremum norm ||·| |∞.
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Time-Evolution Operators

Remark
Similarly, the associated evolution system for a Markov process (Xt)t∈T is

Ps,tf(x) = E[f(Xt)|Xs = x].

This possesses the further properties (could be taken as definitions in an abstract
treatment) which hold for any s ≤ t, s, t ∈ T:

1. Ps,t1 = 1;
2. Ps,tf ≥ 0 if f ≥ 0;
3. ||Ps,tf | | ≤ ||f | |;
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Time-Evolution Operators

Note
We stress the direction of the evolution property is Ps,tf = Ps,rPr,tf and not
Ps,tf = Pr,tPs,tf which might be expected from the intuition that we should apply the
transition for the first time interval [s, r] to the function f first.

• In the setting where S = [N ] is discrete and so Ps,t is represented by the matrix
(P(Xt = j|Xs = i))ij , we see the direction makes sense by

(Ps,rPr,t)ij =
∑
k∈S

(Ps,r)ik(Pr,t)kj

=
∑
k∈S

P(Xr = k|Xs = i)P(Xt = j|Xr = k)

= P(Xt = j|Xs = i) = (Ps,t)ij ,

from using Chapman-Kolmogorov.
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Feller Evolution System

Definition
An evolution system (Ps,t)s≤t,s,t∈T is called a Feller evolution system if for any
f ∈ C0(S) and for any s ≤ t, s, t ∈ T, the following holds:

1. Ps,tf ∈ C0(S);
2. Ps,tf ≥ 0 if f ≥ 0;
3. ||Ps,tf | |∞ ≤ ||f | |∞;
4. The following limit holds:

lim
(σ,τ)→(s,t)

||Pσ,τ f − Ps,tf | |∞ = 0.
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Infinitesimal Generator

Definition
The right generator of the evolution system is defined by the limit

Ltf = lim
h→0+

Pt,t+hf − f

h
,

with domain D(Lt). Similarly, the left generator is defined as

L−t f = lim
h→0+

Pt−h,tf − f

h
,

with corresponding domain D(L−t ).

Remark
We note that ∂sPs,tf |s=t = −L−t .
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Infinitesimal Generator

Remark
In the case of a time-homogeneous evolution system - i.e. Ps,t = Pt−s where (Pt)t≥0 is a
semigroup, we have that the right and left generators coincide.

• In the time-inhomogeneous case, they may not coincide, however, Böttcher (2014)
provides conditions for when they do (e.g. when the operator continuously depends
on time and has bounded coefficients).
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Time-Inhomogeneous CTMCs

Theorem
The time-evolution operator for a time-inhomogeneous CTMC is given by

Ps,tf(x) = f(x)e−
∫ t

s
λr(x)dr +

∫ t

s
λr(x)e−

∫ r

s
λu(x)duKrPr,tf(x)dr,

where Ktf(x) =
∫

Kt(x, dy)f(y).

Leo Zhang Introduction to Discrete Diffusion July 30, 2025 43/101



Time-Inhomogeneous CTMCs

Proof
Let Ts,1 be the first jump from the time s. Then

Ps,tf(x) = E[f(Xt)|Xs = x]
= E[f(Xt)1Ts,1>t|Xs = x] + E[E[f(Xt)|Ts,1 = r, Xr = y]1Ts,1≤t|Xs = x]],

where
E[f(Xt)1Ts,1>t|Xs = x] = f(x)e−

∫ t

s
λr(x)dr,

and
E[f(Xt)|Ts,1 = r, Xr = y] = Pr,tf(y).

We apply the form of the transition kernel to conclude.
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Time-Inhomogeneous Backward Equation

Theorem
The backward equation for a time-inhomogeneous Markov process is given by:

∂sPs,tf = lim
h→0+

Ps+h,t(f) − Ps,tf

h

= lim
h→0+

Ps+h,tf − Ps,s+hPs+h,tf

h

= − lim
h→0+

(
Ps,s+h − id

h

)
Ps+h,tf

= −LsPs,tf.

Remark
This is the more familiar version of the backward equation. Note that we have the
implicit boundary condition that for s = t, Ps,tf(x) = f(x). This equation is usually
used for understanding the evolution of statistics of the stochastic process.
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Time-Inhomogeneous Backward Equation

Remark
We note the previous results only considers the right derivative of Ps,t. By looking at the
left derivative, we have the following expression in terms of the left generator:

∂sPs,tf = lim
h→0+

Ps−h,t(f) − Ps,tf

−h

= − lim
h→0+

Ps−h,sPs,tf − Ps,tf

h

= − lim
h→0+

(
Ps−h,s − id

h

)
Ps,tf

= −L−s Ps,tf.

For the time-inhomogeneous CTMC defined previously, we also have Ls = L−s .
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Time-Inhomogeneous Backward Equation

Theorem
At the level of densities, where we define ps,t(x, y) = P(Xt = y|Xs = x), we have

∂sps,t(x, y) = −Ls,xps,t(x, y),

where Ls,x is the generator Ls acting on the x argument (considering the y argument to
be fixed).
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Time-Inhomogeneous Backward Equation

Proof
The proof proceeds in the same manner as in the time-homogeneous case. To simplify
the proof, apply the definition of L−s instead of Ls (we note that for most practical cases,
the two operators will coincide).
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Time-Inhomogeneous Forward Equation

Theorem
The forward equation for a time-inhomogeneous Markov process is given by

∂tPs,tf = lim
h→0+

Ps,t+hf − Ps,tf

h

= lim
h→0+

Ps,tPt,t+hf − Ps,tf

h

= lim
h→0+

Ps,t

(
Pt,t+hf − f

h

)
= Ps,tLtf.
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Time-Inhomogeneous Forward Equation

Remark
We note the previous results only considers the right derivative of Ps,t. By looking at the
left derivative, we have the following expression in terms of the left generator:

∂tPs,tf = lim
h→0+

Ps,t−hf − Ps,tf

−h

= lim
h→0+

Ps,t−hf − Ps,t−hPt−h,tf

−h

= lim
h→0+

Ps,t−h

(
Pt−h,tf − f

h

)
= Ps,tL−t f.

For the time-inhomogeneous CTMC defined previously, we also have Lt = L−t .
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Time-Inhomogeneous Forward Equation

Theorem
At the level of densities, where we define ps,t(x, y) = P(Xt = y|Xs = x), we have

∂tps,t(x, y) = L∗t,yps,t(x, y),

where L∗t,x is the adjoint to the generator Lt acting on the y argument (considering the x

argument to be fixed). Moreover, this implies that ∂tpt(x) = L∗t pt(x).
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Time-Inhomogeneous Forward Equation

Proof
The proof proceeds in the same manner as in the time-homogeneous case, where we
employ the notion of the adjoint to separate out f to conclude. For the second claim, we
use the fact that L∗t,y is linear and marginalisation to conclude.

• An alterative approach is to fix some constant T > 0 and define u(x, s) = Ps,T f(x).
By the Markov property, we also have the expression
u(x, s) = Ps,tPt,T f(x) = Ps,tu(t, x) for s ≤ t ≤ T . Then by considering ∂tu(x, s),
we have

0 = ∂tu(x, s) =
∫

∂tps,t(x, y)u(y, t) + ps,t(x, y)∂tu(y, t)dy,

where we can use the backward equation and the definition of the adjoint to
conclude.
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Generator for Time-Inhomogeneous CTMCs

Theorem
Returning to the definition of a time-inhomogeneous CTMC (Xt)t≥0, the generator has
the following form

Ltf(x) = L−t f(x) = λt(x)
∫

[f(y) − f(x)]Kt(x, dy).

Proof
Differentiate Ps,t and use the Leibniz integral rule to handle the integral.
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Generator for Time-Inhomogeneous CTMCs

Example
Under the discrete setting, Lt can be represented by a matrix (Lt)ij and f : S → R can
be represented as a vector f = (f1, . . . , f|S|)⊤ ∈ R|S|.

• To see how the form of the Q-matrix arises, we look at the matrix representation of
Lt:

Ltf(i) = (Ltf)i =
∑
j∈S

(Lt)ijfj = λt(i)
∑
j∈S

[fj − fi]Kt(i, j)

=
∑
j ̸=i

[λt(i)Kt(i, j)fj ] − λt(i)fi,

remembering that Kt(i, i) = 0 by definition. Hence, from matching coefficients, we
can conclude Lt has the form of Q-matrix:

∀j ̸= i, (Lt)ij = λt(i)Kt(i, j) and (Lt)ii = −λt(i).
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Generator for Time-Inhomogeneous CTMCs

Example
Let Rt(i, j) represent the rate matrix/generator for a CTMC. The forward equation has a
nice interpretation by the following form:

∂tpt(i) =
∑
j ̸=i

pt(j)Rt(j, i) − qt(i)Rt(i, j),

where the rate of change of probability mass is equal to the difference between the rate
of probability mass moving into state i and out of state i.

• This intuition matches the form of the continuity equation used in flow matching
(due to their related origins (Holderrieth et al., 2024)).
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First-Order Approximation

Remark
From a elementary Taylor expansion, we have for h ≥ 0:

Pt,t+h(f) = Pt,tf + h∂tPt,s(f)|s=t+ + O(h2)
= id(f) + hLtf + O(h2)

=⇒ Pt,t+h = id + hLt + O(h2),

so in the CTMC setting, we have the first-order approximation:

P(Xt+h = j|Xt = i) = δi(j) + h(Lt)ij + O(h2).
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First-Order Approximation

Remark
Moreover, we can also look at the left limits to give

Pt−h,t(f) = Pt,tf − h∂sPs,t(f)|s=t− + O(h2)
= id(f) + hL−t f + O(h2)

=⇒ Pt−h,t = id + hL−t + O(h2),

so in the CTMC setting, we have the first-order approximation:

P(Xt = j|Xt−h = i) = δi(j) + h(Lt)ij + O(h2).

A confusing aspect about some discrete diffusion papers is that they use the rate matrix
to approximate transition probabilities in different directions (e.g. Campbell et al.
(2022)).
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Time Conversion

Definition
(Wentzell, 2022) Let (Xt)t∈T be a Markov process governed by the evolution system
(Ps,t)s≤t,s,t∈T with a right generator Lt. We define the augmented process (X̃t)t∈T in
the augmented probability space (Ω̃, F̃ , P̃) by

1. The augmented state x̃ is defined as x̃ := (s, x) ∈ T× S with T× S equipped with
the σ-algebra:

B̃ :=
{

B̃ ⊂ T× S : B̃s :=
{

x ∈ S : x̃ = (s, x) ∈ B̃
}

∈ B(S), ∀s ∈ T
}

;

2. The augmented event ω̃ := (s, ω) ∈ T× Ω := Ω̃ on the augmented state space
equipped with the σ-algebra:

F̃ :=
{

F̃ ⊂ Ω̃ : F̃s :=
{

ω ∈ Ω : ω̃ = (s, ω) ∈ F̃
}

∈ F , ∀s ∈ T
}

;
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Time Conversion

Definition
3 The augmented process (X̃t)t∈T is defined as

X̃t(ω̃) = X̃t(s, ω) := (s + t, Xs+t(ω)),

and the augmented probability measure is defined so that the following holds:

P̃
(
X̃t(ω̃) ∈ B̃|X̃0(ω̃) = x̃

)
= P̃

(
(s + t, Xs+t(ω)) ∈ B̃|(s, Xs(ω)) = (s, x)

)
:= P(Xs+t(ω) ∈ B̃s+t|Xs(ω) = x),

for any x̃ = (s, x) ∈ T× S, t ≥ 0 and B̃ ∈ B̃.

Leo Zhang Introduction to Discrete Diffusion July 30, 2025 59/101



Time Conversion

Remark
We have the following relationships between the time-inhomogeneous process (Xt)t∈T
and the augmented process:

• If (Xt)t∈T is Markov then (X̃t)t≥0 is Markov;
• We have the relationship L̃f(x̃) = ∂sf(s, x) + Lsf(s, x) where L̃ is the generator of

(X̃t)t≥0;
• The Feller property carries over in both directions.
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Dynkin’s Formula

Theorem
Under the assumptions presented in (Ren et al., 2025), the following relation holds for a
time-inhomogeneous processes:

E [ft(Xt)|X0 = x] = f0(x) + E
[∫ t

0
∂sfs(Xs) + Lsfs(Xs)ds|X0 = x

]
.

Remark
This result is used in order to derive the ELBO in Campbell et al. (2022), specifically to
rewrite the
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Path Measure

Definition
For a time-inhomogeneous CTMC (Xt)t∈[0,T ] with rate matrix Rt, consider the path
space view given by the trajectories W : ω 7→ (t ∈ [0, T ] 7→ Xt(ω)) of (Xt)t∈[0,T ].

• Each trajectory of W can be described in terms of an initial point W0, a sequence of
jump times and new states {(Ti, WTi)}n

i=1 and the condition Tn+1 ≥ T .
• We define the path measure as the induced probability measure assigned to

trajectories by (Xt)t∈[0,T ]:
P(W ∈ dω) = P(W0 ∈ dω0, (T1, WT1) ∈ d(t1, ω1), . . . , (Tn, WTn) ∈ d(tn, ωn), Tn+1 ≥ T )
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Path Measure

Theorem
The path measure has the form:

P(W ∈ dω) = p0(W0) exp
(

−
∫ T

0
Rs(W−

s , W−
s )ds

) ∏
s:Ws ̸=W −

s

Rs(W−
s , Ws),

where W−
s := limt→s− Wt is the left limit of Ws. Moreover, the Radon-Nikodym

derivative between the path measures of two CTMCs easily follows.

Remark
This result is used in order to derive the ELBO in Campbell et al. (2022).
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Path Measure

Proof
This is a simple consequence of the Markov property and the transition probabilities
provided previously.
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Historical Development



Timeline

Discrete diffusion has followed the progression:
• Discrete time Markov processes (Austin et al., 2021)
• Continuous time Markov processes (Campbell et al., 2022)
• “Score”-based formulation (Lou et al., 2023)
• Simplification of the objective for masking discrete diffusion (Shi et al., 2024; Sahoo

et al., 2024)
• Flow matching formulation (Campbell et al., 2024; Gat et al., 2024)
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Austin et al. (2021)

Recall the ELBO objective for DDPM (Ho et al., 2020):

Lvb(x0) =DKL(q(xT |x0)) +
T∑

t=2
Eq(xt|x0) [DKL(q(xt−1|xt, x0)|pθ(xt−1|xt)]

− Eq(x1|x0)[log pθ(x0|x1)].

We see that this decomposition works for any Markov forward noising process
q(x1:T |x0) =

∏
q(xt|xt−1) and Markov reverse process pθ(x0:T ) = p(xT )

∏
pθ(xt−1|xt).
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Austin et al. (2021)

Therefore to generalise this to discrete objects, we can just take (where xt are one-hot
row vectors from representing elements from some discrete set S):

q(xt|xt−1) = Cat(xt; xt−tQt),

and all quantities of interest such as qt(xt|x0) and q(xt−1|xt, x0) are tractable, and the
KL can easily be computed here.
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Austin et al. (2021)

Austin et al. (2021) explores different noising processes for q(xt|x0) = Cat(xt|x0Q̄t)
where Q̄t = Q1Q2 . . . Qt which have tractble stationary distributions:

• Uniform
• Masking
• Discretized Gaussian
• Token embedding distance
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Campbell et al. (2022)

We have standard issues with fixed schedule generative models:
• We are forced to pre-specify the noise discretisation we want to train on;
• We are limited to simple ancestral sampling/inflexible sampling;
• From the continuous case, we see that working in continuous time can bring a lot of

benefits.
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Campbell et al. (2022)
Campbell et al. (2022) proposes defining the forward process as a time-inhomogeneous
CTMC (Xt)t∈[0,T ] with rate matrix Rt and marginal distributions qt.

• The corresponding time-reversal (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] is also a CTMC but with
the rate matrix R̂t:

R̂t(x, x̃) = Rt(x̃, x)qt(x̃)
qt(x) = Rt(x̃, x)

∑
x0

qt|0(x̃|x0)
qt|0(x|x0)q0|t(x0|x) for x ̸= x̃,

This follows from the forward/backward equations and Bayes’ rule.
• The reverse process is parametrised in terms of pθ(x0|x) being substituted above.

Remark
Note that the convention used in Campbell et al. (2022) is that R̂t denotes the rate of
YT−t = Xt, so the forward equation of the backward process is ∂tqT−t = R̂⊤t qT−t.
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Campbell et al. (2022)

Remark
Note that Campbell et al. (2022) uses the approximation

qt|t−∆t(x|x̃) = δx,x̃ + Rt(x̃, x)∆t + O(∆t2).

We recall from before that the same rate matrix Rt can be used in the approximation of
qt+∆t|t(x|x̃) as well - i.e. Rt is not biased in any direction as the left and right generators
coincide.
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Campbell et al. (2022)

Theorem
The negative ELBO has the form:

L(θ) = TEt∈U(0,T ),qt(x),rt(x̃|x)

∑
x′ ̸=x

R̂θ
t (x, x′)

− Zt(x) log
(
R̂θ

t (x̃, x)
)+ C,

where Zt(x) =
∑

x′ ̸=x Rt(x, x′) and rt(x̃|x) = (1 − δx̃,x)Rt(x, x̃)Zt(x).

Remark
We see the correspondence: Zx = λt(x) and rt(x̃|x) = Kt(x, x̃) using the previous
notation.
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Campbell et al. (2022)

To avoid evaluating the neural network twice for each gradient step at x, x̃, Campbell
et al. (2022) proposes the following approximation to the objective:

Lapprox(θ) = TEt∈U(0,T ),qt(x),rt(x̃|x)

∑
x′ ̸=x̃

R̂θ
t (x̃, x′)

− Zt(x) log
(
R̂θ

t (x̃, x)
)+ C,

as the distributions of x and x̃ are approximately the same.
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Campbell et al. (2022)

For D dimensional data X1:D ∈ SD - i.e. sequences with D tokens - instead of
considering the total possible |S|D transitions, Campbell et al. (2022) considers a sparse
rate matrix to ensure transitions only ever involves a change in exactly one token:

• This results in choosing a forward process which factorises as
qt|s(x1:D

t |x1:D
s ) =

∏D
d=1 qt|s(xd

t |xd
s);

• The forward and reverse rates are of the form:

R1:D
t (x̃1:D, x1:D) =

D∑
d=1

Rd
t (x̃d, xd)δx1:D\d,x̃1:D\d

R̂t(x1:D, x1:D) =
D∑

d=1
Rd

t (x̃d, xd)δx1:D\d,x̃1:D\d

∑
xd

0

q0|t(xd
0|x1:D)

qt|0(x̃d|xd
0)

qt|0(xd|xd
0)
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Campbell et al. (2022)

Further introduces the sampling schemes:
• τ -leaping to approximate CTMC trajectories
• Predictor-corrector scheme
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Lou et al. (2023)
Lou et al. (2023) proposes learning the score function s(x, t) defined as

s(x, t) =
(

pt(y)
pt(x)

)
y∈S

,

instead of the density p0|t.
• Recall the form of the time-reversal rate matrix which is a function of s(x, t).x‘
• We can view this as a generalisation of the score to discrete spaces by considering

the “concrete” score:
∆pt(x)
pt(x) =

(
pt(y) − pt(x)

pt(x)

)
y∈S

.

Remark
Confusingly, the paper works with ∂tpt = Qtpt as the forward equation for the forward
process, so that the (forward) rate matrix is Q⊤t .
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Lou et al. (2023)

Definition
The denoising score entropy loss is given by

LDSE(θ) = Ex0,xt

∑
y ̸=xt

wxt,y

(
sθ(xt)y − pt(y|x0)

pt(xt|x0) log sθ(xt)y

) ,

which has the minimiser sθ = s(x, t).

Remark
This can be shown as equivalent (up to a constant) to the score entropy loss:

Ext

∑
y ̸=xt

wxt,y

(
sθ(xt)y − pt(y)

pt(xt)
log sθ(xt)y

) .

with a similar trick as the score matching loss from using pt(x) =
∑

x0 p(xt|x0)p(x0).Leo Zhang Introduction to Discrete Diffusion July 30, 2025 78/101



Shi et al. (2024); Sahoo et al. (2024)

Shi et al. (2024) considers a masking discrete diffusion on the state space
S = [m] = {0, 1, . . . , m} where m denotes the special mask token.

• The forward process is given by (where x are one-hot column vector in this notation):

q(xt|x0) = Cat(xt; Q̄(t)⊤x0) where Q̄(t) = αtI + (1 − αt)1e⊤m,

and em denotes the vector of unit entry in the mth position and zeros elsewhere.
• Essentially, this encodes the process where xt remains at x0 with probability αt or

transitions to m with probability 1 − αt; and when xt = m, the process stays at the
masked state.

• We take αt to monotonically decrease from 1 to 0.
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Shi et al. (2024); Sahoo et al. (2024)

Remark
This amounts to the choice of generator:

Q(t) = β(t)(1e⊤m − I) = β(t)Q,

for some choice of β ≥ 0.
• By the forward equation ∂tqt = Q(t)⊤qt, we can use the commutativity of Q - i.e.

Q(t)Q(s) = Q(s)Q(t) - to show the solution is given by the matrix exponential:

qt = exp
(

Q

∫ t

0
β(s)ds

)⊤
q0 = Q̄(t)⊤q0 where αt =

∫ t

0
β(s)ds.
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Shi et al. (2024); Sahoo et al. (2024)

Remark
Due to simplicity of the forward process, we can compute the reverse process CTMC
q(xs|xt, x0) conditioned on x0 in closed form. In particular, the reverse transition matrix
(i.e. evolution system) is

R̄x0(t, s) = I + αs − αt

1 − αt
em(x0 − em)⊤.

• Moreover, we can compute the generator for the reverse process conditioned on x0 as

Rx0(t) = − α′t
1 − αt

em(x0 − em)⊤.
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Shi et al. (2024); Sahoo et al. (2024)

Theorem
Consider the (mean) parametrisation pθ(xs|xt) := q(xs|xt, µθ(xt, t)), where

µθ(xt, t) =
{

softmax(fθ(xt, t)) xt = m

xt xt ̸= m,

The negative ELBO has the simple form:

L(θ) =
∫ 1

0

α′t
1 − αt

Eq(xt|x0)
[
δxt,m · x⊤0 log µθ(xt, t)

]
dt.
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Shi et al. (2024); Sahoo et al. (2024)

Remark
We note that Shi et al. (2024) also demonstrates how the objectives from Campbell et al.
(2022) and Sahoo et al. (2024) can be derived from this objective,

• In particular, the relationship between the score and mean parametrisations:

s(m, t)j = αt

1 − αt
P(x0 = j|xt = m) which satisfies

∑
j ̸=m

s(m, t)j = αt

1 − αt
,

where s(x, t)j = qt(j)
qt(x) is the score function.
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Campbell et al. (2024); Gat et al. (2024)
The standard flow matching recipe also carries over to the discrete case due to the same
marginalisation relationship:

• Define some simple conditional path pt|1(xt|x1) which satisfies p1|1(xt|x1) = δx1(xt)
where x1 ∼ pdata and p0|t(x0|x1) = pnoise(x0)

• Given the rate matrix Rt(x, y|x1) generating a CTMC producing the probability
path pt|1, the following rate matrix:

Rt(xt, j) := Ep1|t(x1|xt) [Rt(xt, j|x1)] ,

generates the marginal probability path pt(xt) = Epdata [pt|1(xt|x1)] bridging pdata
and pnoise.

Remark
We note that the notation of Gat et al. (2024) defines the “probability velocity” ut as the
transpose of the rate matrix of the underlying CTMC.
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Campbell et al. (2024); Gat et al. (2024)

Remark
We note that the relationship between the conditional rate matrix and marginal rate
matrix also holds for the general case of arbitrary generators (under reasonable
assumptions) (Holderrieth et al., 2024):

Ltf(x) = Ez∼p1|t(·|x) [Lz
t f(x)] .
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Campbell et al. (2024); Gat et al. (2024)

In order to learn the marginal rate matrix Rt, Campbell et al. (2024) proposes the
cross-entropy objective:

L(θ) = Epdata(x1),U(t;0,1),pt|1(xt|x1)
[
log pθ

1|t(x1|xt)
]

.

We can then sample from the model from estimating Ep1|t(x1|xt) [Rt(xt, j|x1)].

Remark
The ELBO decomposition from Campbell et al. (2022) still holds in this setting, but
Campbell et al. (2024) justifies this new objective by decomposing the ELBO further and
arguing that only optimising the cross-entropy component is beneficial.
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Ren et al. (2025)

Definition

Let (Xt)t∈[0,T ] be a Markov process. The associated time-reversal process (
←
Xt)t∈[0,T ] is

defined by
←
Xt := lim

h→0+
XT−t−h = X(T−t)− ,

and by setting
←
XT := X0.

Theorem
Under suitable assumptions, we have the following relation for the time-reversal generator
←
Lt:

pt

←
LT−tf = L∗t (ptf) − fL∗t pt,

where pt denotes the marginal distribution of (Xt)t∈[0,T ] at time t.
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Ren et al. (2025)

Theorem
Recall the generator for a CTMC can be expressed as
Ltf(i) =

∑
j∈S [f(j) − f(i)]Qt(x, y). We can express the time-reversal generator for a

CTMC by
←
LT−tf(i) = 1

pt(i)
∑
j∈S

(pt(j)f(j)Qt(i, j) − pt(i)f(i)Qt(j, i))

− f(i)
pt(i)

∑
j∈S

(pt(j)Qt(i, j) − pt(i)Qt(j, i))

=
∑
j∈S

[f(j) − f(i)]st(i, j)Qt(i, j),

where st(i, j) = pt(j)
pt(i) is the score function.
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Ren et al. (2025)

Remark
• We see the time-reversal must also be a CTMC with the corresponding generator.
• Moreover, Ren et al. (2025) shows that when parametrising the time-reversal

generator in a natural way, we can recover the objective from Lou et al. (2023),
• This relies on considering the KL divergence of between the two path measures,

where we note the parametrised generator differs from the true time-reversal by
some carré du champ operator term.

Note
Similar ideas have been presented in Benton et al. (2024) and Holderrieth et al. (2024).
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Further Topics



Further Topics

Other topics regarding discrete diffusion:
• Sampling (Liu et al., 2024b,a; Kim et al., 2025);
• Connection between masking discrete diffusion and masking any-order autoregressive

models (Ou et al., 2024);
• Inference scaling and data scaling compared to autoregressive models (Prabhudesai

et al., 2025; Swerdlow et al., 2025);
• Guidance (Schiff et al., 2024; He et al., 2025)
• Other forward processes (e.g. uniform) (Sahoo et al., 2025).
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Applications



Molecular Generation

Molecular generation relies on modelling discrete atom types and bond types:
• Continuous diffusion with quantisation (Hoogeboom et al., 2022; Schneuing et al.,

2024);
• Continuous diffusion on the simplex (Davis et al., 2024; Stark et al., 2024);
• Discrete diffusion (Vignac et al., 2023; Irwin et al., 2024).
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